Prediction Models

Select the desired prediction time range, spatial division (Square - 1 degree grid, District - administrative district boundaries) and scenario.
q01 - Positive scenario, q05 - Baseline, q09 - Negative scenario.
Click on a particular district to observe additional information


  • Observed Value
  • Predicted Value q05
  • Predicted Value q01
  • Predicted Value q09
  • Observed Class
  • Predicted Class q05
  • Predicted Class q01
  • Predicted Class q09
  • Class Difference q05
  • Class Difference q01
  • Class Difference q09
  • MASE q05
  • MASE q01
  • MASE q09
  • RMSE q05
  • RMSE q01
  • RMSE q09

  • Observed Value
  • Predicted Value q05
  • Predicted Value q01
  • Predicted Value q09
  • Observed Class
  • Predicted Class q05
  • Predicted Class q01
  • Predicted Class q09
  • Class Difference q05
  • Class Difference q01
  • Class Difference q09
  • MASE q05
  • MASE q01
  • MASE q09
  • RMSE q05
  • RMSE q01
  • RMSE q09

Assessment Charts

MASE Assessment

The mean absolute scaled error (MASE) is a measure of the accuracy of forecasts. It is the mean absolute error of the forecast values, divided by the mean absolute error of the in-sample one-step naive forecast.

RMSE Assessment

Root-mean-square error (RMSE) is a frequently used measure of the differences between values (sample or population values) predicted by a model or an estimator and the values observed.

Class Difference Assessment

Class Difference shows a share of match/mismatch drought severity between predicted and observed values

Class Difference Assessment